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ABSTRACT

The multilevel fast multipole method (MLFMM)
is an algorithm that has had great success in reduc-
ing the computational time required to find the so-
lution to the Galerkin boundary integral form of the
Helmholtz equation. We present a new formulation of
the MLFMM using Fourier basis functions rather than
spherical harmonics in order to accelerate and sim-
plify the time-critical stages of the algorithm. With
modifications to the transfer function in the precom-
putation stage of the MLFMM, the interpolation and
anterpolation algorithms become straightforward ap-
plications of FFT interpolations only. Using spectral
methods, constructive algorithms are derived to deter-
mine a near-optimal quadrature for a given level in the
algorithm and an a-priori estimate of the integration
error.

1. INTRODUCTION

Since its development in (Rokhlin, 1990; Coifman
et al., 1993; Rokhlin, 1993; Engheta et al., 1992; Ra-
hola, 1996), the MLFMM has proven to be a very ef-
fective tool for solving acoustic and electromagnetic
problems. We consider only the scalar wave equation,
although any results can be extended to the vector case
as described in (Chew et al., 2001; Darve, 2000b). Ap-
plying the boundary integral method to the Helmholtz
equation results in a dense linear system which can
be solved by iterative methods such as GMRES or
BCGSTAB. These methods require a dense matrix-
vector product which, for a direct implementation, re-
quires O(N2) operations to compute. The MLFMM
uses an approximation of the dense matrix to perform
the product in O(N log N) time. Computations tak-
ing advantage of this approximation are distributed
through an oct-tree encompassing the domain of the
scatterers to achieve the improved asymptotic running
time.

There are a number of difficulties in implementing
the MLFMM, each of which much be carefully consid-
ered and optimized to achieve the improved complex-

ity. The largest complication is the quadrature sam-
pling rate must increase with the size of the box in
the oct-tree, requiring interpolation and anterpolation
algorithms over the sphere to transform the data be-
tween quadratures. Local algorithms and interpolant
matrix sparsifications are fast, but incur large errors.
Fast transforms are available for spherical harmonics,
but they are approximate, quite complicated to imple-
ment, and not always stable. We present the MLFMM
and these choices in the next section.

2. THE MULTILEVEL FAST MULTIPOLE
METHOD

The MLFMM improves the asymptotic complexity
of the matrix-vector multiplication

σi =
∑

j 6=i

eıκ|xi−xj |

|xi − xj | ψj :=
∑

j

Mijψj (1)

for i, j = 1, . . . , N from O(N2) to O(N log2 N). This
improvement is based on the Gegenbauer series

eıκ|r+r0|

|r + r0| = ıκ

∞∑
n=0

(−1)n(2n + 1)Gn(r, r0) (2)

Gn(r, r0) = h(1)
n (κ |r0|)jn(κ |r|)Pn(r̂ · r̂0)

where h
(1)
n is the spherical Hankel function of the first

kind, jn is the spherical Bessel function of the first
kind, and Pn is the Legendre polynomial of order n.
The series converges absolutely and uniformly for |r| <
|r0| and has been studied extensively in (Carayol &
Collino, 2004; Darve, 2000a).

Truncating the Gegenbauer series at ` and using
the identity

∫

S2
eıκr·sPn(r̂0 · s) dS(s) = 4πınjn(κ |r|)Pn(r̂ · r̂0)

where the integral is over the unit sphere S2 = {s ∈
R3 : |s| = 1}, then

eıκ|r+r0|

|r + r0| =
∫

S2
eıκr·sT`,r0(s) dS(s) + ε` (3)
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where we have defined the Gegenbauer truncation er-
ror ε` and the “transfer function”

T`,r0(s) =
ıκ

4π

∑̀
n=0

ın(2n + 1)h(1)
n (κ |r0|)Pn(s · r̂0). (4)

Additionally, it will be useful to note the Jacobi-Anger
series

eıκr·s =
∞∑

n=0

ın(2n + 1)jn(κ |r|)Pn(s · r̂). (5)

Consider two disjoint clusters of points {xi | i ∈ A}
and {xi | i ∈ B} with radii rA ≥ rB ≥ 0 and centers
cA and cB respectively. If |cA − cB | > rA, then the
matrix-vector product (1) is accelerated by using the
approximation

M ≈
[
MAA M′

AB

M′
BA MBB

]

where

MAA = [Mij ]i,j∈A

M′
AB =

[∫

S2
eıκs·ricT`,r0(s)e

ıκs·rcj dS(s)
]

i∈A,j∈B

ric =xi − cA, r0 = cA − cB , rcj = cB − xj

The improved asymptotic complexity of the FMM is
achieved by constructing a tree of nodes {cp}, typically
an octree, which partitions the support of the source
and field points at the finest level. First, the outgo-
ing plane-wave expansions due to the source points (or
basis functions) are accumulated at the finest level in
the tree. These outgoing expansions are then aggre-
gated upward through the tree via additional plane-
wave expansions. Incoming plane-wave expansions are
computed from the outgoing by multiplication of the
transfer function. These incoming plane-waves are
then disaggregated downward through the tree. At
the finest level the integration is performed and accu-
mulated with the near field contribution to determine
the field value at the field points (or testing functions).

2.1 Spherical Quadrature in the MLFMM

Noting the addition formula

(2n + 1)Pn(p̂ · q̂) = 4π
n∑

m=−n

Y m
n (p̂)Y m

n (q̂)

the transfer function (4) and Jacobi-Anger series can
be expressed as

T`,r0(s) =
∑̀
n=0

n∑
m=−n

tmn Y m
n (s) (6)

eıκr·s =
∞∑

n=0

n∑
m=−n

em
n Y m

n (s) (7)

Therefore, we wish to exactly integrate the spherical
harmonics, Y m

n . Below, we enumerate a number of
choices for appropriate spherical quadratures that have
previously been studied.

1. The simplest choice are sample points chosen uni-
formly in θ and φ. However, this choice does
not accurately integrate the spherical harmonics
and requires approximately twice as many points
as the Gauss-Legendre quadrature below (Darve,
2000b).

2. The most common choice of sample points are uni-
form points for θ and Gauss-Legendre points for φ.
With N + 1 uniform points in the θ direction and
N+1

2 Gauss-Legendre points in the φ direction, all
Y m

n , −n ≤ m ≤ n, 0 ≤ n ≤ N are integrated ex-
actly (Darve, 2000b; Koc et al., 1999).

3. McLaren in (McLaren, 1963) developed opti-
mal choices of samples for general functions on
S2 based on equally spaced points and derived
from invariants of finite groups of rotations. He
also proposes a method for constructing equally
weighted integration formulas on sets of any de-
sired number of points by taking the union of
icosahedral configurations.

2.2 Interpolation in the MLFMM

The quadrature sampling rate depends depends on
the spectral content of the translation operator, eıκs·r.
This term’s spherical harmonic coefficients em

n in (7)
decreases super-exponentially roughly after the κ |r|
mode, which scales linearly with the box size in the
tree. Therefore, as we go up the tree in the aggregation
step and |r| becomes larger, a larger quadrature and
corresponding interpolation algorithm are required to
resolve these higher modes. These modes must be re-
solved since they interact with the modes in the trans-
fer function, which do not decay as ` increases.

Similarly, as we go down the tree in the disaggre-
gation step, |r| becomes smaller, preventing the higher
modes of the incoming field approximation from con-
tributing to the integral as a consequence of Parseval’s
theorem. Thus, as the incoming field is disaggregated
down the tree, a smaller quadrature can be used to
resolve it. This makes the integration faster and is ac-
tually required to achieve an improved asymptotic run-
ning time at the cost of requiring anterpolation algo-
rithms. Below, we enumerate a number of choices for
interpolation and anterpolation algorithms that have
previously been studied.

1. General interpolation algorithms for non-uniform
grid points like Lagrange interpolation or B-
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splines are fast and provide for simple error analy-
sis. In (Koc et al., 1999) it is shown that the error
induced from Lagrange interpolation decreases ex-
ponentially as the number of interpolation points
is increased for a given function of finite band-
width. Thus, there is a trade-off between error
and speed. The introduction of error is unavoid-
able with local schemes and is dependent on the
values of the function at the time of interpolation.

2. For a set of quadrature points (θk, φk), k =
1, . . . ,K with respective weights ωk and corre-
sponding function value fk, a direct spherical har-
monic transform sends fk to a new quadrature
(θ′k′ , φ

′
k′), k′ = 1, . . . , K ′ via the linear transfor-

mation

fk′ =
∑

m,l≤K

Y m
l (θ′k′ , φ

′
k′)

∑

k

ωkY m
l (θk, φk)fk

This transform has nice properties analogous to
those of the Fourier transform. A direct compu-
tation requires O(KK ′) operations which would
result in an O(N2) FMM. Fast spherical trans-
forms (FST) have been developed in (Driscoll &
Healy, 1994; Healy et al., 2003; Rokhlin & Tygert,
2006) and applied to the FMM in (Chowdhury
& Jandhyala, 2006). Using the FST reduces
the interpolation and anterpolation procedures
to O(K log2 K), which results in a O(N log2 N)
MLFMM. However, the accuracy and stability
of these algorithms are questionable as they rely
on the nonequispaced discrete Fourier transform
and/or the fast Legendre transform.

3. Approximations of the direct spherical transform
have also been investigated in (Jakob-Chien &
Alpert, 1997; Darve, 2000b). The interpolation
matrix

Ak′k =
∑

m,l≤K

Y m
l (θ′k′ , φ

′
k′)

∑

k

ωkY m
l (θk, φk)

can be sparsified in a number of ways to pro-
vide an interpolation/anterpolation method that
scales as O(K) with scalable relative error.

3. FOURIER BASED MLFMM

The Fourier based fast multipole method is based
on the the identity
∫

S2
eıκr·sT`,r0(s) dS(s) =

∫ 2π

0

∫ 2π

0

eıκr·sT s
`,r0

(s) dθdφ

(8)

where s = [cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)] and
T s

`,r0
is the “modified transfer function”

T s
`,r0

(θ, φ) =
1
2
T`,r0(s) |sin(φ)| (9)

Because the integrand is continuous and periodic, this
formulation allows the use of the Fourier basis func-
tions {eınθeımφ} which form an L2 orthonormal set
over L2([0, 2π] × [0, 2π]). Thus, we efficiently use two
dimensional uniform quadratures, fast Fourier trans-
forms in the interpolation and anterpolation steps, and
spectral arguments in the error analysis. The result is
a fast and easily implemented version of the MLFMM
with strong control over the maximum absolute error,
which we detail in the following sections.

3.1 Computing the Modified Transfer Function

Select a uniform quadrature with points (θi, φj)
defined by

θi = 2π
i

Nθ
φj = 2π

j

Nφ

Noting that the plane wave and modified transfer func-
tion both have spherical symmetry since

s(θ, φ) = s(π + θ, 2π − φ)

then the computational and memory cost will be re-
duced if the quadrature is also constructed with spher-
ical symmetry since only half of the quadrature points
will be need computed and stored. Thus, we force Nφ

to be a multiple of 2 and Nθ to be a multiple of 4.
By taking advantage of all of the symmetries of this
quadrature the number of modified transfer functions
that need to be precomputed is reduced from 316 per
level to 34 - saving a factor of 9.3 in memory and cost-
ing a negligible permutation of values in time.

A key step to computing T s
`,r0

is to remove the fre-
quencies which a given quadrature cannot resolve. If
T s

`,r0
were simply sampled, significant frequency alias-

ing (or folding) would occur unless we used an un-
reasonably large quadrature. This is due to the slow
decay of the Fourier series of |sin(φ)|,

F(m; |sin(φ)|) =
(−1)m + 1
π(1−m2)

=

{
2
π

1
1−m2 if m even

0 if m odd

Since the spectrum of the plane-wave function

eıκr·s = eıκ|r| cos(θs,r) =
∞∑

n=−∞
ınJn(κ |r|)eın(θs,r)

decays very rapidly for n & κ |r|, the high frequencies
in T s

`,r0
will not contribute to the final integral as a

result of Parseval’s theorem. By removing these fre-
quencies from the modified transfer function, a smaller
quadrature can be used without significantly affecting
the total error.
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Suppose we have chosen a quadrature character-
ized by (Nφ, Nθ). Since T s

`,r0
is band-limited with

bandwidth 2` + 1 in the θ-direction, we only need
to treat the φ-direction carefully. Noting that T`,r0

is bandlimited in φ with bandwidth 2` + 1, only fre-
quencies |m| ≤ Nφ/2 + ` of |sin(φ)| contribute to the
Nφ/2 frequencies of T s

`,r0
resolved by the quadrature.

Therefore, to compute a low-pass T s
`,r0

we follow the
algorithm sketched below:

For each θi, 0 ≤ i < Nθ/2
Tk ← 1

2T`,r0(θi,
2πk
2`+1 ), k = 0, . . . , 2`.

T̃k ← Fourier series coefficient of Tk.
s̃m ← F(|m| ≤ Nφ/2 + `; |sin(φ)|).
T̃ s

n ← s̃m ⊗ T̃k convolution of Fourier series.
T̃ s

n ← truncate to frequencies |n| ≤ Nφ/2.
T s(θi, φj) ← Inverse transform of T̃ s

n.

This algorithm yields the low-pass modified trans-
fer function at (θi, φj), 0 ≤ i < Nθ/2, 0 ≤ j < Nφ

which can be unwrapped to the remaining points by
using the spherical symmetry

(θi, φj) = (θNθ/2+i, φNφ−j).

Note that this method can also be simply ex-
pressed in terms of Fourier interpolations and anter-
polations. It is equivalent to making a Fourier inter-
polation of Tk to (2` + 1) + (2(Nφ/2 + `) + 1) − 1
points, multiplying by a low-pass |sin(φ)| with fre-
quencies |m| ≤ Nφ/2 + `, and performing a Fourier
anterpolation back to Nφ points.

Finally, because sampling the transfer function at
a single point is an O(`) operation, the algorithm as
presented is O(`3). The computation of the trans-
fer function at all sample points can be accelerated
to O(`2) as in (Ergul & Gurel, 2006) by taking ad-
vantage of its symmetry about the r̂0 axis and using
interpolation algorithms, but at the cost of introducing
additional error.

3.2 Choice of Quadrature

The quadrature parameters can be constructively
determined by deriving the maximum error they in-
cur. The error in computing the integral with uniform
quadrature is

|εI | =
∣∣∣∣
∫ 2π

0

∫ 2π

0

eıκr·sT s
`,r0

(s) dθdφ

−
Nφ∑

m=1

Nθ∑
n=1

ωn,meıκsn,m·rT s,L
`,r0

(sn,m)

∣∣∣∣∣∣

where sn,m = [cos(θn) sin(φm), sin(θn) sin(φm), cos(φm)]
and T s,L

`,r0
(sn,m) is the low-pass modified transfer func-

tion described in Sec. 3.1,

=
∣∣∣∣
∫ 2π

0

∫ 2π

0

eıκr·s
(
T s,L

`,r0
(s) + T s,H

`,r0
(s)

)
dθdφ

−
Nφ∑

m=1

Nθ∑
n=1

ωn,m

(
EL

κr(sn,m) + EH
κr(sn,m)

)
T s,L

`,r0
(sn,m)

∣∣∣∣∣∣

where EL
κr consists of the low frequencies of eıκr·s

which are resolved by the quadrature and EH
κr consists

of the high frequencies not resolved by the quadra-
ture. Since EL

κrT
s,L
`,r0

is integrated exactly by a uniform
quadrature,

=
∣∣∣∣
∫ 2π

0

∫ 2π

0

EH
κr(s)T

s,H
`,r0

(s) dθdφ

−
Nφ∑

m=1

Nθ∑
n=1

ωn,mEH
κr(sn,m)T s,L

`,r0
(sn,m)

∣∣∣∣∣∣

=
∣∣∣∣
∫ 2π

0

∫ 2π

0

EH
κr(s)T

s,H
`,r0

(s)− EĤ
κr(s)T

s,L
`,r0

(s) dθdφ

∣∣∣∣

where we have denoted the aliased high frequencies of
eıκr·s as EĤ

κr(s),

=
∣∣∣∣
∫ 2π

0

∫ 2π

0

(
EH

κr(s)− EĤ
κr(s)

)
T s

`,r0
(s) dθdφ

∣∣∣∣

Transforming to Fourier space and applying the tri-
angle inequality to prevent unpredictable cancelation
effects,

≤ 4π2
∑̀

n=−`

∞∑
m=−∞

∣∣∣Ẽ(n, m)
∣∣∣
∣∣∣T̃ s

`,r0
(−n,−m)

∣∣∣

Ẽ(n,m) = ẼH
κr(n, m)− ẼĤ

κr(n,m)

This remains an accurate upper bound due to the fast
decay of Ẽ for sufficiently large values of Nθ and Nφ.
See Fig. 1. Furthermore, this does not use phase in-
formation in computing the error, which accounts for
more directional choices of r0 and r by taking advan-
tage of the shift theorem.

3.2.1 Choosing Nφ

The worst case for εI in terms of Nφ occurs when
r and r0 are aligned with the z-axis. This causes all
spectral information to be contained in the φ-direction
and makes εI a function of Nφ only. It leads to

|εI | ≤ 4π2
∞∑

m=−∞

∣∣∣ẼH
κr(0,m)− ẼĤ

κr(0,m)
∣∣∣
∣∣∣T̃ s

`,r0
(0,−m)

∣∣∣
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Fig. 1: The value of
∣∣∣ẼH

κr(0,m)− ẼĤ
κr(0, m)

∣∣∣ for κ |r| =
0.8
√

3 · 100 and Nφ = 318.

and applying the Jacobi-Anger identity,

eiκs·r =
∞∑

n=−∞
inJn(κ |r|)einϕ

where cos(ϕ) = r̂ · s, this simplifies this to

|εI | = 4π2
∞∑

m=−∞

∣∣JM(Nφ,m)(κ |r|)
∣∣
∣∣∣T̃ s

`,r0
(0, m)

∣∣∣ (10)

where

M(Nφ,m) =

{
Nφ − |m| |m| ≤ Nφ/2− 1
|m| |m| > Nφ/2− 1

(11)

which can be used to efficiently search for a value Nφ

via the following algorithm sketched below.

Choose Nn
φ sufficiently larger than 2` + 1.

Tk ← T s
`,|r0|ẑ(0, 2πk

Nn
φ

), k = 0, . . . , Nn
φ − 1.

Tm ← absolute value of Fourier series of Tk.
Em ← |Jm(κ |r|)|.
For Nφ from 2` to Nn

φ by 2
E∗

m ← EM(Nφ,m).
If E∗ · T < ε/4π2, return Nφ.

Since Nn
φ is typically only a small constant larger than

2` + 1, the algorithm as presented is dominated by
the computation of the O(`) modified transfer function
values and requires O(`2) operations. Important op-
timizations include noting the symmetry E∗

m = E∗
−m

and Tm = T−m and also taking advantage of the very
fast decay of Jn to accelerate the inner product by not
including terms which cannot contribute. More ad-
vanced searching methods also provide improved per-
formance.

3.2.2 Choosing Nθ

After determining an appropriate Nφ, a significant
optimization is made by allowing Nθ to be a function of
φ. This significantly reduces the number of quadrature
points at negligible cost to the error. The worst case
for the integration error occurs when r and r0 are in

the xy-plane. Without loss of generality, suppose r̂ =
x̂. Then considering a constant φ = φj and using the
Jacobi-Anger identity, the plane wave can be expressed
as

eıκr·s =
∞∑

n=−∞
inJn(κ |r| sin(φj))einθ

and noting that Jn(κ sin(φj) |r|) is exponentially small
when

n ∼ O(κ |r| sin(φj))

implying that we can truncate the series at Nθ(φj) ∼
O(κ |r| sin(φj)) without incurring any appreciable er-
ror. Estimates of Nθ(φj) can also be developed
by determining when Jn(κ |r| sin(φj)) is exponentially
small, as in the computation of the excess bandwidth
formula (EBF) in (Chew et al., 2001). However, we
find the EBF generated quadrature typically has an
overestimated sampling rate.

First, it must be noted that letting Nθ be a func-
tion of φj requires an additional step in the computa-
tion of the modified transfer function. Sec. 3.1 com-
puted the transfer function on a Nφ/2 + 1 ×Nθ grid.
With Nθ → Nθ(φj), the data computed for each φj

must be Fourier anterpolated from length Nθ to length
Nθ(φj).

To accurately and reliably compute Nθ(φj) the
same procedure as in Sec. 3.2.1 is applied but with
r and r0 in the xy-plane. This represents the worst
case for the integration error as a function of Nθ. For
a given φj , we search for a Nθ(φj) such that

|εI | ≤ 2π
∑̀

n=−`

∣∣JM(Nθ(φj),n)(κ |r| sin(φj))
∣∣
∣∣∣T̃ s

`,r0
(n;φj)

∣∣∣

(12)

is bounded by a prescribed error. This is accomplished
via the following sketched algorithm.

Set the poles Nθ(φ0) = Nθ(φNφ/2) = 1.
Choose Nn

θ sufficiently larger than 2` + 1.
For φj , j = 1, . . . , Nφ/2− 1

Tk ← T s
`,|r0|x̂( 2πk

2`+1 , φj), k = 0, . . . , 2`.
Tn ← absolute value of Fourier series of Tk.
En ← |Jn(κ |r| sin(φj))|.
For Nθ(φj) from 2 to Nn

θ by 2
E∗

n ← EM(Nθ(φj),n).
if E∗ · T < ε/2π, save Nθ(φj) and j ← j + 1.

Since Nn
θ is only a small constant larger than 2` + 1,

the algorithm as presented is dominated by the com-
putation of the modified transfer function and requires
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O(`3) operations. Again, using more advanced search-
ing methods accelerates this algorithm and symmetry
and decay properties of E∗ and T should be use to im-
prove the inner product computation. Using the EBF
as an initial guess in the search for Nθ(φj) further im-
proves the searching speed. Additionally, only half of
the Nθ(φj)’s should be computed due to symmetry.

3.2.3 Choosing |r| and |r0|

The previous algorithms require representative
values of |r| and |r0| for each level of the tree. The
worst-case transfer vectors, r0, are well known to be
those with minimum magnitude. If al is the box size
at level l, then |r0| = 2al is the smallest transfer vector
length in the common one buffer box case.

The worst case values of |r| is well known to be
the largest. For a box of size al, |r| ≤ al

√
3. However,

using |r| = al

√
3 in the previous methods is a very

conservative choice. This case only occurs when two
points are located in the exact corners of the boxes -
rare indeed. See Fig. 2. Instead, we let |r| = αal

√
3

for some α ∈ [0, 1]. A high α will strongly guarantee
an upper bound on the error generated by the quadra-
ture, but the points which actually generate this error
become more and more rare. A lower value of α will
yield a smaller quadrature, but more points may fall
outside the radius |r| where the upper bound on the
error is guaranteed. A typically reliable choice appears
to be α = 0.8. A study of this parameter will appear
in a subsequent paper.

Fig. 2: The worst case r and r0, projected from the
3D box. Here, |r0| = 2al and i and j on at opposite
corners of the box so that |r| = |ric|+ |rcj | = al

√
3.

3.2.4 Number of Quadrature Points

Recall from Sec. 2.1 that the typical approach in
the standard MLFMM is to use N+1 uniform points in
the θ direction and N+1

2 Gauss-Legendre points in the
φ direction so that all Y m

n , −n ≤ m ≤ n, 0 ≤ n ≤ N
are integrated exactly. In (Koc et al., 1999), Chew et.
al. takes N+1

2 = ` + 1, which accounts for the rapid
decay of the spherical harmonics in the plane wave
expansion. This results in

Mg = 2(` + 1)2 ≈ 2`2

quadrature points.

For a given Gegenbauer series truncation `, the
total number of active quadrature points required in
the Fourier based MLFMM is approximately

Mf ≈ Nφ

2
1
π

∫ π

0

Nθ(φ) dφ ≈ (` + C)
2
π

(2` + 1)

where C ≥ 1 is a small integer dependent on ` nu-
merically computed from the method in Sec. 3.2.1.
Keeping only the dominant term,

Mf ≈ 4
π

`2

Thus, the method presented in this paper uses approx-
imately 0.6 times the number of quadrature points in
the standard MLFMM. However, it may be possible
that the same Nθ optimization can be applied to the
standard MLFMM for the same reasons it was applied
in Sec. 3.2.2 to reduce the standard quadrature to a
comparable size.

3.3 Interpolation and Anterpolation

Most importantly, the Fourier based MLFMM di-
rectly uses FFTs in the interpolation and anterpola-
tion steps. This makes the time critical upward pass
and downward pass especially fast and easy to imple-
ment.

Characterize a quadrature by an array of length
Nφ/2 + 1,

Q = [1, Nθ(φ1), . . . , Nθ(φNφ/2−1), 1]

noting that Nθ(φj) = Nθ(φNφ/2+j) and Nθ(φj) =
Nθ(φNφ/2−j). A transform of the data F (θi, φj) sam-
pled on a quadrature Q to a quadrature Q′ is per-
formed by a sequence of Fourier interpolations and
anterpolations. Let

Nθ = max( max
0≤j≤Nφ/2

Nθ(φj), max
0≤j≤N ′

φ/2
N ′

θ(φj) )

Then, the following steps, as illustrated in Fig. 3, per-
form an exact interpolation/anterpolation using only
FFTs.

1. For each φj , 0 ≤ j ≤ Nφ/2, Fourier interpo-
late the data [F (θi=0,...,Nθ(φj)−1, φj)] from length
Nθ(φj) to Nθ.

2. For each θi, 0 ≤ i < Nθ/2, wrap
the data to construct the periodic
sequence from the rest of the line
[F (θi, φj=0,...,Nφ/2), F (θi+Nθ/2, φj=Nφ/2−1,...,1)].
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3. For each θi, 0 ≤ i < Nθ/2, Fourier interpolate the
data [F (θi, φj=0,...,Nφ−1)] from length Nφ to N ′

φ.

4. For each θi, 0 ≤ i < Nθ/2, unwrap
the data [F (θi, φj=0,...,N ′

φ−1)] to construct
the sequences [F (θi, φj=0,...,N ′

φ/2)] and
[F (θi+Nθ/2, φj=0,...,N ′

φ/2)].

5. For each φj , 0 ≤ j ≤ N ′
φ/2, Fourier anterpolate

the data [F (θi=0,...,Nθ(φj)−1, φj)] from length Nθ

to N ′
θ(φj).

Fig. 3: The data profile at each step in an anterpo-
lation from a large quadrature Q with Nφ = 30 to a
smaller quadrature Q′ with N ′

φ = 24. The data corre-
sponding to a pole has been darkened for clarity.

4. NUMERICAL RESULTS

A direct computation was used to compute the
optimal Gegenbauer truncation ` and the methods de-
scribed Sec. 3.2 were used to construct a quadrature.
For a given box size s, the quadrature and truncation
are constructed with |r| = 0.8s

√
3, |r0| = 2s, and tar-

get error eps. The total measured error, ε, is

ε =
eıκ|r+r0|

|r + r0| −
Nφ∑

m=1

Nθ(φm)∑
n=1

ωn,meıκsn,m·rT s,L
`,r0

(sn,m)

The total Gegenbauer truncation error, εG, is

εG =
eıκ|r+r0|

|r + r0| − ıκ
∑̀
n=0

(−1)n(2n + 1)Gn(r, r0)

The total integration error, εI , is

εI = ε− εG

The plotted errors in Fig. 4 represent the maximum
error found over many directions r̂ and magnitudes
|r| ≤ 0.8s

√
3, where s is the box size.

Figure 5 shows the recorded running times of the
Fourier based MLFMM and the direct matrix-vector
product on a Intel Core(2) Quad CPU Q9450 2.66GHz
with 4GB of RAM. Note that the intersection point is
less than N = 10, 000.
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Fig. 4: Error of the FMM integral using a direct com-
putation of ` and quadrature chosen as in Sec. 3.2.

5. CONCLUSIONS

We have proposed using a Fourier basis in the
spherical variables θ and φ: eıpθeıqφ. By modifying
the Helmholtz kernel approximation and using a uni-
form quadrature we can take advantage of very fast,
exact, and well-known FFT interpolation and anterpo-
lation methods. By exploiting symmetries, the num-
ber of uniform quadrature points required is almost
identical to the number of Gauss-Legendre quadrature
points typically used for spherical quadratures and can
be improved to use even fewer points. However, the
Fourier based MLFMM requires careful changes to
the precomputation stage where the modified trans-
fer functions, T s

`,r0
(s), are computed. Since |sin(φ)| is

not smooth, we must accurately precompute a band-
limited version of the modified transfer function.

The Fourier based MLFMM approach has a num-
ber of advantages. Since the interpolation and anter-
polation algorithms are exact, significant errors in the
algorithm are a function of only the truncation pa-
rameter ` and the quadrature, specifically the band-
width in the φ-direction. The truncation error ε` has
been extensively studied and is well understood. The
integration error εI can be accounted for during the
precomputation stage and precise bounds on the fi-
nal error can be made. The error analysis relies on
well-known properties of the Fourier basis. We have
used the results in constructive algorithms to deter-
mine the appropriate quadrature and constrain the
MLFMM error a-priori. We find that bounding inte-
gration error is accurate and efficiently exploitable to
search for the optimal quadrature. Although not re-
quired in the Fourier based MLFMM, computing the
optimal quadrature can aid in error analysis and im-
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Fig. 5: Running times of the Fourier Based MLFMM
with κ ∼ N1/3 such that for N = 4 × 106 the points
are uniformly distributed in a cube with side length
64λ.

prove performance. Since the Fourier Based MLFMM
uses a uniform quadrature and well-known FFT algo-
rithms, the time-critical stages of the algorithm are
much easier to implement. Modern FFT packages are
very common, extremely fast, numerically exact, and
easy to use. FFTs scale much better than other fast in-
terpolation algorithms of constant accuracy. Although
the asymptotic complexity is not improved, the smaller
constant in the FFT’s O(N log N) complexity yields
improved running times in relation to algorithms of
comparable accuracy.
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